搜索
搜索
新闻中心
NEWS CENTER
/
/
/
纳米涂层材料的发展

纳米涂层材料的发展

  • 分类:公司新闻
  • 作者:
  • 来源:
  • 发布时间:2021-11-12
  • 访问量:0

【概要描述】纳米材料可划分为三大类:一是一维的纳米粒子;二是二维的纳米固体(包括薄膜和涂层、管、线);三是三维的纳米体材(包括介孔材料)。纳米材料具有很好的力学性能,如高强、高硬和良好的塑性。金属材料的屈服强度和硬度随着晶粒尺寸的减小而提高。同时,不牺牲塑性和韧性。纳米材料的表面效应和量子尺寸效应对纳米材料的光学特性有很大的影响。如,它的红外吸收谱频带展宽,吸收谱中的精细结构消失,中红外有很强的光吸收能力。纳米材料的颗粒尺寸越小,电子平均自由程缩短,偏离理想周期场愈加严重,使得其导电性特殊。当晶粒尺寸达到纳米量级,金属会显示非金属特征。 纳米材料与常规材料在磁结构方面的很大差异,必然在磁学性能表现出来。当晶粒尺寸减小到临界尺寸时,常规的铁磁性材料会转变为顺磁性,甚至处于超顺磁状态。纳米材料的比表面积/体积很大,因此它具有相当高的化学活性,在催化等,敏感和响应等性能方面显得尤为突出。

纳米涂层材料的发展

【概要描述】纳米材料可划分为三大类:一是一维的纳米粒子;二是二维的纳米固体(包括薄膜和涂层、管、线);三是三维的纳米体材(包括介孔材料)。纳米材料具有很好的力学性能,如高强、高硬和良好的塑性。金属材料的屈服强度和硬度随着晶粒尺寸的减小而提高。同时,不牺牲塑性和韧性。纳米材料的表面效应和量子尺寸效应对纳米材料的光学特性有很大的影响。如,它的红外吸收谱频带展宽,吸收谱中的精细结构消失,中红外有很强的光吸收能力。纳米材料的颗粒尺寸越小,电子平均自由程缩短,偏离理想周期场愈加严重,使得其导电性特殊。当晶粒尺寸达到纳米量级,金属会显示非金属特征。 纳米材料与常规材料在磁结构方面的很大差异,必然在磁学性能表现出来。当晶粒尺寸减小到临界尺寸时,常规的铁磁性材料会转变为顺磁性,甚至处于超顺磁状态。纳米材料的比表面积/体积很大,因此它具有相当高的化学活性,在催化等,敏感和响应等性能方面显得尤为突出。

  • 分类:公司新闻
  • 作者:
  • 来源:
  • 发布时间:2021-11-12
  • 访问量:0
详情

纳米材料可划分为三大类:一是一维的纳米粒子;二是二维的纳米固体(包括薄膜和涂层、管、线);三是三维的纳米体材(包括介孔材料)。纳米材料具有很好的力学性能,如高强、高硬和良好的塑性。金属材料的屈服强度和硬度随着晶粒尺寸的减小而提高。同时,不牺牲塑性和韧性。纳米材料的表面效应和量子尺寸效应对纳米材料的光学特性有很大的影响。如,它的红外吸收谱频带展宽,吸收谱中的精细结构消失,中红外有很强的光吸收能力。纳米材料的颗粒尺寸越小,电子平均自由程缩短,偏离理想周期场愈加严重,使得其导电性特殊。当晶粒尺寸达到纳米量级,金属会显示非金属特征。 纳米材料与常规材料在磁结构方面的很大差异,必然在磁学性能表现出来。当晶粒尺寸减小到临界尺寸时,常规的铁磁性材料会转变为顺磁性,甚至处于超顺磁状态。纳米材料的比表面积/体积很大,因此它具有相当高的化学活性,在催化等,敏感和响应等性能方面显得尤为突出。
 

扫二维码用手机看

了解更多产品